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Abstract

In this paper, written as a general historical and technical introduc-

tion to the various review papers collected in the special issue “Solar

and Stellar Dynamo: A New Era”, we review the evolution and cur-

rent state of dynamo theory and modelling, with emphasis on the solar

dynamo. Starting with a historical survey, we then focus on a set

of “tension points” that are still left unresolved despite the remark-

able progress of the past century. In our discussion of these tension

points we touch upon the physical well-posedness of mean-field electro-

dynamics; constraints imposed by magnetic helicity conservation; the

troublesome role of differential rotation; meridional flows and flux trans-

post dynamos; competing inductive mechanisms and Babcock-Leighton

dynamos; the ambiguous precursor properties of the solar dipole; cycle

amplitude regulation and fluctuation through nonlinear backreaction

and stochastic forcing, including Grand Minima; and the promises

and puzzles offered by global magnethydrodynamical numerical sim-

ulations of convection and dynamo action. We close by considering
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2 Evolution of Solar and Stellar Dynamo Theory

the potential bridges to be constructed between solar dynamo theory

and modelling, and observations of magnetic activity in late-type stars.

Keywords: Magnetohydrodynamics, dynamo, solar cycle, stellar cycles

1 From first ideas to contemporary state

The history of solar dynamo studies can be said to begin with the famous talk
delivered by J. Larmor [94] (the paper is also reprinted in [148]). He attracted
the attention of the astronomical community to the fact that the only visible
way to obtain solar magnetic fields, as observed a few years before by G.E. Hale
and his colleagues seems to be electromagnetic induction in moving electrically
conducting solar media. The car engine was at that time the latest impressive
achievement of human civilization, and the idea became known as dynamo
theory, after a part of this engine.

Formally speaking, the solar dynamo is an example of a wide variety of var-
ious instabilities interesting for astrophysics. Naively speaking, a century may
seem as providing sufficient time to investigate an instability in all important
details. Dynamos give an interesting and instructive impression here. Initially
Larmor’s idea proved to be very rich and to contain great potential for devel-
opment. After various modifications, generalizations and improvements and
being fruitfully combined with other scientific ideas, the dynamo still retains
until now quite a lot of problems deserving clarification and development in
the context of contemporary science. Our aim here is to describe some of these
problems, and present the development of dynamo studies which lead to this
new perspective. Of course, we can give here a number of instructive features
only, and do not pretend to offer comprehensive review.

A quite obvious point is that Larmor spoke about the Sun rather than
say about spiral galaxies just because the concept of galaxies was developed
in the next decade only. Application of dynamo theory to the Earth, plan-
ets, stars, galaxies, clusters of galaxies, accretion discs, etc, has become an
important part of astrophysics and has offered an attractive and important
perspective for exoplanets studies (e.g. [146, 18]). These applications depart
from solar dynamo studies in context of specific features of celestial bodies
under consideration as well as contemporary observational abilities.

This extensive development of dynamo studies is very important for astron-
omy, however intensive investigation of the physical basis of solar dynamo looks
instructive in a broader scientific context.

First of all, an attempt for straightforward realization of dynamo insta-
bility faces the fact that according to Lenz’s Law, electromagnetic induction
suppresses rather enhances the seed magnetic field. This is why rather sim-
ple spherically symmetric or planar 2D flows can not support dynamo action.
A number of corresponding antidynamo theorems, from the initial idea of
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T. G. Cowling [39] up to sophisticated 2D antidynamo theorem of Ya. B. Zel-
dovich [204] (see also a further discussion in [205]) were suggested in following
decades. Then Yu. B. Ponomarenko [136] demonstrated that dynamo action is
possible in a swirling jet and this idea remains the basis of contemporary exper-
imental dynamo studies (e.g. [95, 165]). This branch of dynamo studies was
able to demonstrate, at the turn of the new millenium, that dynamo is far to be
a purely theoretical speculation, but rather a real physical phenomenon which
may have in a perspective even practical applications. Laboratory dynamo
experiments are quite remote from direct astrophysical applications, however
the very laboratory dynamo demonstration is important for solar physics. Con-
temporary authors do not need to demonstrate how a very weak solar magnetic
field can be enhanced up to the kGs values and may admit, if desired, that
solar matter was magnetized just in the very early Sun. The results obtained
in these studies also contain an important impulse for theoretical mathematics
as a fruitful example of problems for systems of parabolic differential equations
with violation of the maximum principle.

Of course, we are interested here in dynamos in astrophysical context. The
breakthrough here is associated with the famous migratory dynamo proposed
by E.N. Parker [124]. Parker demonstrated how one can overcome the problem
with Lenz law using the idea of two magnetic circuits where the first circuit
enhances magnetic field in the second one while the second circuit enhances
magnetic field in the first. Conventional dipole magnetic field is associated
with the first circuit and is transformed in the magnetic field of the second
circuit by solar differential rotation. Magnetic field of the second circuit can be
considered as a toroidal magnetic field hidden somewhere in the solar interior.
A very important point of the scenario is that the recovery of the poloidal
magnetic field from the toroidal one requires mirror asymmetry of the flow.

The point that mirror asymmetry of hydrodynamic flows plays a key role
in astrophysical dynamo was suggested at the same time as the idea of effects
of P-noninvariance was developed in particle physics (e.g. [96]). The interplay
between ideas of mirror-asymmetry effects in these two remote domains of
physics emerged as a beautiful page of contemporary science.

Parker developed his idea based on his excellent physical intuition. A solid
basis for the idea was suggested in a fully independent research ten year later
by physicists from East Germany, namely M. Steenbeck, F. Krause and K.-
H. Rädler [169, 66] (see also [89]) in the form of mean-field electrodynamics.
The key effect of the scheme responsible for the mirror asymmetry became
known as the α-effect (see also Section 2 below). The idea published initially
in an east-German journal and written in German became accessible to the
international community practically immediately due to the translation per-
formed by P. Roberts and M. Stix [145]. Both are well-known experts in the
field (e.g. [172, 54]) as well as Stix was a native German speaker.

An interplay with ideas and experts from the West and East provides a
part of the story very suitable for a novel. In fact Steenbeck, who was a very
impressive person, leaves an instructive testimonial in a book about his life
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[167] (see also [66]), and some of its elements can be found in novels written
later by H. Königsdorf in years of peaceful revolution in East Germany in the
late 1980’s. Regarding the Russian side of the story, one of the authors of this
chapter keeps in his memory how he passed on to Paul Roberts a proof of the
book [203] on a street just nearby the Kremlin, in what looked like a scene in
a spy movie.

Parker [124] as well as Steenbeck et al. [169] considered the initially (almost)
unmagnetized medium and associated the mirror asymmetry with Coriolis
force action. The magnetic field creates the mirror asymmetry as well, and
contemporary understanding of the solar situation is that this contribution is
more important. One more point is the importance of meridional circulation as
well as other physical effects which understandably were ignored in the early
stages of scientific development (more on these in Sections 5 and 6 below).
Combined with the ideas of H. W. Babcock and R. B. Leighton [5, 98], this
resulted in the contemporary flux-transport model of solar dynamo (e.g. [34,
41]).

The first solar dynamo models dealing with the amplification of a weak seed
magnetic field considered the prescribed flow properties (so-called kinematic
models). A natural further step was to include a nonlinear dynamo suppres-
sion based on some balance arguments and conservation of energy looked as
a natural idea for the balance. The situation occurred to be however much
more complicated and after the very intensive scientific battle it becomes clear
that the magnetic helicity conservation is more important for the problem
(viz. Section 3 herein). Conservation of magnetic helicity was discovered as
early as in the nineteenth century, however nobody considered it as something
practically important until K. Moffatt [109] reintroduced the idea in contempo-
rary science. Mathematical aspects of the problem are that magnetic helicities
(as well as various other helicities considered in dynamo studies) can be con-
sidered as instructive examples of topological invariants and its topological
investigation belonged to activities of V. I. Arnol’d and his school (e.g. [3]).

An important point here is that some crucial dynamo drivers including α-
effect are associated with topological invariants and being inviscid integral of
motions they redistribute in course of dynamo action between various layers in
the solar convection shell. Presentation of this redistribution in various solar
dynamo models still deserves investigation, however quite a rich bulk of ideas
here is accumulated; we mention here as an early achievement the work of
Ukrainian astronomer V. N. Krividubsky (e.g. [90]).

Observational identification of dynamo drivers remains a part of astronomy
which is still quite remote from its final stage. An important progress here was
associated with the idea of N. Seehafer [155] who suggested a method to observe
magnetic helicity inside sunspots. Due to long-term observations undertaken
by Chinese astronomers [206] time-longitude distribution of magnetic helicity
over several solar cycles was observed and the idea propagates on other relevant
helicities in further studies by various groups.
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Modelling of dynamo action in rotating turbulent spherical shells demon-
strated that apart of solar equatorward propagating dynamo waves with
polarities which follow the Hale laws, various less convenient magnetic field
configurations may be excited (e.g. [74]). This may be instructive to explain
magnetic activity of some stars and exoplanets.

Helioseismological studies (e.g. [55]) are another (more obvious) way to
know more about solar dynamo drivers. Development of helioseismology was
associated with one more basic transformation in solar dynamo models (see
Section 4 herein).

One more point in dynamo studies to be mentioned here is that the
geodynamo models were one of the first cases where direct numerical simu-
lations were able to reproduce very complicated physical processes in various
fine details [54]. Contemporary solar dynamo models successfully follow this
way (see Section 10). These achievements impressively demonstrated direct
numerical simulations and physical explanations of a phenomenon in terms
of traditional theoretical physics in two separate problems. The point is that
contemporary numerics are so powerful that they can mimic processes which
theoreticians still can not explain in traditional terms. It looks as a general
challenge for contemporary science to be addressed in its further development.

It is undeniable that in the past century our understanding of astrophysical
dynamos has progressed remarkably, if somewhat non-linearly (in the geomet-
rical sense of the word). Nonetheless, this progress has raised a host of new
questions and puzzles, many still outstanding. The remainder of this review
focuses on “tension points” left behind by this meandering path from early
ideas to the present state, with emphasis on the solar dynamo.

2 Tension: Why is mean-field electrodynamics
working ?

As just discussed, in the mid-1950’s Parker argued that the cyclonicity
imparted by the Coriolis force on convective updrafts and downdrafts could
effectively break axisymmetry on small spatial scales, and in doing so bypass
Cowling’s anti-dynamo theorem [124]. The basic idea is illustrated on Figure
1. Parker showed that this mechanism could regenerate a poloidal magnetic
field from an initially purely toroidal magnetic component, and, operating in
conjunction with rotational shearing of the poloidal component so induced
(the so-called αΩ dynamo scenario), produce a working dynamo loop leading
to regular polarity reversals.

This groundbreaking idea was soon thereafter formalized through the devel-
opment of mean-field electrodynamics [170, 168] (see also [123, 109, 89, 110],
and references therein). Separating the flow and magnetic field into large-scale,
slowly varying “mean” component 〈U〉, 〈B〉 and small-scale rapidly varying
“turbulent” components u′,b′, substitution into the induction equation and
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Fig. 1 Twisting of an horizontal magnetic fieldline by a cyclonic fluid updraft. In this
simple schematic depiction the fieldline is twisted outside of the plane of the page, forming
a small loop in a plane perpendicular to the original fieldline. Under the right-hand rule,
applying Ampère’s Law to this small loops yields a current density pointing parallel to the
undeformed magnetic field. Figure 1 in [123], reproduced with permission.

averaging yields an evolution equation for the mean magnetic field:

∂〈B〉

∂t
= ∇× (〈U〉 × 〈B〉+ ξξξξ − η∇× 〈B〉) , (1)

where the mean electromotive force ξξξξ is given by the average of the small-scale
flow-field cross-correlation:

ξξξξ = 〈u′ × b′〉 . (2)

Closure is achieved by expanding this turbulent electromotive force (emf) ξξξξ in
terms of 〈B〉 and its derivatives:

ξi = aij〈Bj〉+ bijk
∂〈Bj〉

∂xk

+ ... (3)

This latter expression highlights the fact that mean-field electrodynamics is
fundamentally a linear theory, in the sense that the tensors a,b, etc, can-
not themselves depend on 〈B〉, but only on the statistical properties of the
turbulent flow.

The symmetric part (αααα) of the a tensor captures the Parker mechanism of
magnetic field deformation by non-mirror-symmetric turbulence, and is now
known as the α-effect. The three components of its antisymmetric part can
be recast in the form of a pseudo-velocity acting on the mean-magnetic field,
called turbulent pumping. The antisymmetric part of the rank-3 tensor b can
be recast as a rank-2 turbulent diffusivity tensor ββββ [153].

The challenge is now to compute these tensorial quantities from known
statistical properties of the turbulent flow, which turns out to be a tall order.
There are three physical regimes under which this is tractable (see, e.g.,Section
6.3 in [18]; also Section 3.4.1 in [120], [143] and chap. 7 in [110]).
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1. The energy density of the mean magnetic field is larger than the energy
density of the small-scale field;

2. The magnetic Reynolds number is low;
3. The turbulent cyclonic eddies have a lifetime shorter than their character-

istic turnover time.

These three physical regimes all amount to the mean magnetic field suffer-
ing little deformation by the small-scale turbulent flow either because magnetic
tension kicks in and prevents large deformation (Regime 1), field/flow slip-
page occurs and prevents large deformation (Regime 2), or not enough time is
available to induce a large deformation (Regime 3). Pictorially, going back to
Figure 1, the magnetic fieldline must be twisted out of the plane by an angle

∼< π/2.
Regimes 1 and 2 are most certainly not applicable to solar interior con-

ditions. Regime 3 is harder to assess, as it is notoriously difficult to predict
the coherence time of a given turbulent flow, or even to extract it a posteriori
from a numerical simulation. As we shall see presently, some circumstantial
evidence exists suggesting that Regime 3 might be the key.

For turbulence that is isotropic and homogeneous, the αααα and ββββ tensor
reduce to diagonal forms αI, βI, with I the identity tensor, and turbulent
pumping vanishes. The second-order correlation approximation then leads to

α = −
1

3
τc〈u

′ · (∇× u′)〉 , β =
1

3
τc〈(u

′)2〉 , (4)

where τc is the coherence time of the small-scale turbulent flow. The α-effect
is now simply proportional to the mean kinetic helicity of turbulence, and
the turbulent diffusivity to its energy density. As shown by F. Krause in his
Habilitation thesis (as cited in [168]), in the case of a solar/stellar stratified
rotating convection zone:

α = −
16

15
τ2c 〈(u

′)2〉ΩΩΩΩ · ∇(log ρurms) , [Northern hemisphere] (5)

where urms ≡
√

〈(u′)2〉, ΩΩΩΩ is the solar angular velocity vector, and with a sign
flip in the Southern solar hemisphere (see, e.g., Section 6.2 in [18]). Equation
(5) implies that if the properties of turbulence are independent of latitude, then
α is positive in the Northern solar hemisphere and proportional to cos θ, where
θ is the polar angle (if in doubt, work through footnote 5 in [18]). Except for τc,
the RHS of these expressions are readily extracted from numerical simulations
upon suitable averaging. The a and b tensors can also be extracted using a
variety of techniques [20, 138, 153, 4, 159, 193, 194, 157]. The turbulent mean-
field coefficients so extracted can then be used as input to a classical mean-field
solar dynamo dynamo model, to ascertain whether the resulting large-scale
magnetic field evolution resembles —or not— that characterizing the parent
MHD simulation. Such tests of internal consistency have been carried out suc-
cesfully [161, 159, 194], with independent numerical simulations and extraction
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methods. This suggests that mean-field electrodynamics does properly cap-
ture the process of turbulent induction and resulting dynamo action, at least
in these MHD numerical simulations, and by extension, hopefully, in the sun
and stars as well.

Global MHD simulations of large-scale magnetic cycles can also be used
to validate —or not— the analytical expressions (4). This exercise has been
carried out by [159] (among others), estimating τc by the common recipe con-
sisting in equating τc with the convective turnover time ℓ/ut, where ℓ and ut

are local measures of the density scale height and turbulent velocity. The spa-
tial distributions they obtain for α and β reconstructed from Eq. (4) match
tolerably well those directly extracted from their MHD simulation (cf. their
Figs. 2 and 6), except for the global amplitude, which are larger by a factor of
≈ 5 in the reconstructions based on Eq. (4). The amplitudes can be reconciled
provided one assumes that the coherence time τc is one fifth of the convective
turnover time, which is consistent with low coherence time turbulence (Regime
3 above). The generality of this intriguing result remains to be established.

To sum up: Although tractable only in specific parameter regimes of
dubious validity in the solar/stellar context, mean-field electrodynamics ade-
quately captures turbulent induction in MHD simulations of solar convection
and dynamo action, and leads to internally consistent spatiotemporal evolu-
tion of large-scale magnetic fields. Why it actually works so well remains an
open question.

3 Tension: the troublesome magnetic helicity

Magnetic helicity is a topological invariant measuring the linkage between
magnetic flux systems [109, 11, 110]. With the magnetic field expressible as
B = ∇× A, the magnetic helicity content HB of a volume V of magnetized
fluid is given by:

HB =

∫

V

A ·B dV . (6)

In the absence of a flux of helicity at the bounding surface of the volume V ,
HB evolves according to:

dHB

dt
= −2µ0η

∫

V

J ·B dV , (7)

where J is the current density and µ0 the magnetic permeability. Magnetic
helicity is clearly a conserved quantity in the ideal (dissipationless) limit η →
0, expressing the (topological) fact that magnetic fieldlines cannot cross one
another.

The solar large-scale magnetic field, associated with the magnetic cycle,
is demonstrably helical. In the context of mean-field electrodynamics (Section
2), this helicity is imparted on the large-scale magnetic field by the α-effect,
and is of a sign opposite to the kinetic helicity of the small-scale turbulent
flow (viz. Eq. 4). As the large-scale magnetic field is amplified, so must HB,
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in apparent violation of the above conservation argument. Note that polarity
reversals of the large-scale magnetic field are irrelevant to the problem; revers-
ing the magnetic polarity flips the sign of both A and B, leaving the sign of
HB unchanged. How, then, can the solar large-scale magnetic field wax and
wane in the course of the magnetic cycle ?

Here again mean-field electrodynamic offers some useful insight. Applying
scale separation to the vector potential A and current density J, two evolution
equation for the magnetic helicity associated with the large- and small-scale
magnetic components can be obtained [18, 143]; in the ideal (η → 0) limit:

d

dt

∫

V

〈A〉 · 〈B〉dV = +2

∫

V

ξξξξ · 〈B〉dV , (8)

d

dt

∫

V

〈a′ · b′〉dV = −2

∫

V

ξξξξ · 〈B〉dV (9)

with the mean electromotive force ξξξξ given by Eq. (2). Observe that the
action of the turbulent emf on the large-scale magnetic field, i.e., the terms
on the RHS of Eqs. (8)–(9), produces magnetic helicity of opposite signs
at large and small scales, so that the total magnetic helicity produced by
ξξξξ acting on 〈B〉 is thus nil. The large-scale field 〈B〉 can now be amplified
because magnetic helicity of opposite sign builds up at small scales. How-
ever, this turns out to oppose the α-effect, as originally demonstrated by
[137] (see also Section 9 in [18]). The large-scale field is amplified, but at
the cost of rapidly quenching the inductive part of the turbulent emf [?,
see]]Kleeorinetal95,BlackmanBrandenburg02,Brandenburgetal09.

A way out of this quandary was identified in [19]. It consists in invoking
a direct turbulent cascade of helicity towards even smaller scales than that at
which ξξξξ is operating, so that Ohmic dissipation sets in, as per Eq. (7), and
dissipates the helicity produced at the inductive scale (RHS of Eq. (9)). At
this dissipative scale, the magnetic Reynolds number Rm = utL/η is of order
unity, but remains much larger at the inductive scale of ξξξξ, and even larger yet
at the scale of 〈B〉, so that Eqs. (8)–(9) effectively hold. Now the α-effect can
operate, and a helical large-scale magnetic field can grow.

Another mechanism allowing to evade the constraint of magnetic helicity
dissipation is to evacuate it through the volume boundaries. A star like the
sun is not embedded in a true vaccum, and magnetic helicity can be evac-
uated through the corona. In particular, coronal mass ejections have been
suggested to contribute significantly to the global magnetic helicity budget
[13, 102, 56, 103]. Avoiding α-quenching via helicity flux across domain bound-
aries and/or cancellation across the equatorial plane has also found support
in MHD numerical simulations [17, 192].

To sum up: Conservation of magnetic helicity in the high-Rm regimes
poses a strong constraint on magnetic field amplification by turbulent induc-
tion, and can potentially quench the growth of the solar large-scale magnetic
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field. This constraints can be bypassed by a double turbulent cascade or expul-
sion of helicity from the region of dynamo action. Which of these mechanisms
(if any or either) is regulating the overall solar magnetic helicity budget,
remains an open question.

4 Tension: The troublesome solar differential
rotation

Already in the nineteenth century, R.C. Carrington and G. Spörer indepen-
dently noted that sunspots emerge closer and closer to the solar equator as
the sunspot cycle unfolds. The first convincing explanation for this striking
spatiotemporal pattern was proposed almost a century later by Parker, in the
form of dynamo waves [124]. In αΩ mean-field dynamos, these waves propagate
in a direction s given by

s = α∇Ω× êφ , (10)
a result now known as the Parker-Stix-Yoshimura sign rule. Extending the
observed surface latitudinal differential rotation pattern inwards along cylin-
drical isosurfaces yields a positive radial shear component at low latitudes,
which then requires a negative α-effect in the Northern hemisphere1 to produce
equatorward propagation [202, 171].

This neat picture was thrown into disarray by the first helioseismic inver-
sions of the solar internal differential rotation [21, 44]. Rather that cylindrical
isocontours of angular velocity, these inversions revealed that the surface differ-
ential rotation remains constant along approximately radial segments, yielding
a shear that is primarily latitudinal within the bulk of the convection zone,
transiting beneath it to near-solid body rotation across a thin rotational shear
layer since known as the tachocline [166, 179]. As shown on Figure 2, this com-
plex form of the solar internal differential rotation yields very complex patterns
of dynamo waves, even if the α-effect is artificially concentrated at the base
of the convection zone, to suppress induction by the purely latitudinal shear
above. The Figure shows Northern hemisphere time-latitude (“butterfly”) dia-
grams for the toroidal magnetic component at the base of the convection zone,
using different latitudinal dependency and sign for the α-effect in a classical
αΩ mean-field model (for more on these dynamo solutions, see Section 4.2 in
[35]). Here, and even with the α-effect concentrated towards low latitude via
a sin2 θ cos θ dependency on polar angle (panels B and C), the strong positive
radial shear in the high latitude regions of the tachocline dominate induction,
leading to multiple branches and activity peaking at much higher latitudes
than observed.

Within the standard αΩ dynamo modelling framework, the only way to
achieve equatorward dynamo wave propagation is to strongly concentrate a
(negative) α effect not only radially at the base of the convection zone, but also
latitudinally in its equatorial regions. Recall from Eq. (5) that the minimal

1Or more precisely: a negative αφφ tensor component, the only component typically retained
in classical αΩ mean-field models.
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Fig. 2 Northern hemisphere time-latitude diagrams of the large-scale toroidal magnetic
component for three mean-field kinematic axisymmetric classical αΩ dynamo solutions, all
using the same solar-like parametrization of the solar internal differential rotation, but dif-
ferent latitudinal profile and sign for the α-effect, in all cases concentrated near the base of
the convective envelope (r/R = 0.7, where the diagram are constructed). The toroidal mag-
netic field are normalized to their peak amplitude, and isocontours are equally spaced, with
yellow→red (green→blue) indicating positive (negative) values. Figure 7 in [35], used with
permission.

latitudinal dependency expected from cyclonic convection leads to a positive
α-effect concentrated at high latitudes, with α ∝ cos θ; this does lead to equa-
torward propagating dynamo waves (viz. Fig. 2A), but again peaking at far
higher latitudes than observed on the Sun.

Helioseismology has also revealed the presence of a thin subsurface radial
shear layer extending from the equator to mid-latitudes; equatorward propa-
gating dynamo waves concentrated at low latitudes can then be produced in
conjunction with a positive Northern hemisphere α-effect, but the small thick-
ness of the layer sets the length scale of dynamo eigenmodes, typically leading
to multiple overlapping magnetic flux systems even for weakly supercritical
dynamos.

To sum up: in classical αΩ mean-field dynamo models built using the
solar internal differential rotation profile as inferred from helioseismic inver-
sions, it is very hard to produce a sunspot butterfly diagram-like dynamo wave
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propagation pattern without making some very ad hoc assumptions regarding
the spatial distribution and/or sign of the turbulent α-effect.

5 Tension: Flux transport by meridional flows

Equatorward propagation of activity belts in the course of the cycle can also
be achieved through advection by a bulk meridional flow acting as a “con-
veyor belt” displacing the internal toroidal magnetic field equatorward as it
is amplified by rotational shearing [190, 36, 93, 142, 131]. Dynamo models
achieving a solar-like butterfly diagram in this manner are known as flux trans-
port dynamos (see [41, 82] for dedicated reviews). Adding a meridional flow
to a classical αΩ dynamo model of the type considered in Section 4, one finds
that bulk transport of the magnetic field overwhelms the dynamo wave pro-
vided advection by the meridional flow dominates over diffusive transport. The
ratio of these two transport mechanisms is quantified via a magnetic Reynolds
number:

Rm =
u0L

ηT
, (11)

where u0 is a typical speed for the meridional flow, ηT is a turbulent magnetic
diffusivity, and L is a characteristic length scale for the meridional flow, usually
taken as the solar radius. For magnetic flux transport to take place in the
desired manner, this magnetic Reynolds number must be relatively high, i.e.,
∼ 102 or more. See Section 4.4 in [35] for some representative dynamo solutions.

Powered by Reynolds stresses and pole-equator temperature differences
caused by rotational influence on convective energy transport, meridional flows
are as unavoidable as differential rotation in a rotating, stratified turbulent
convective envelope [83, 147, 87, 108, 6, 50]. This flow is observed at the solar
surface, poleward-directed and with speeds peaking in the range 10–15 m s−1

at mid latitudes, with some variations in phase with the solar cycle [61, 181, 28].
Mass conservation evidently requires an equatorward return flow somewhere
within the convection zone. Helioseismic determinations of the internal merid-
ional flow have yielded conflicting results, some inversions suggesting a very
shallow equatorward return flow [73], others a complex flow pattern character-
ized by multiple flow cells stacked in radius and/or latitude [150, 207], while
others yet are consistent with a single cell per meridional quadrant, with the
equatorward return flow peaking near the base of the convection zone [139, 53].

Global numerical simulations of stratified rotating convection do provide
additional insight on the matter. Solar-like differential rotation, in the sense
of the rotation rate decreasing monotonically from the equator towards the
poles, materializes when the Rossby number Ro = ut/2ΩL is sufficiently small,

∼
< 0.3, but in this regime the meridional flow is markedly multi-celled. A sin-
gle meridional flow cell per meridional quadrant is achieved at higher Rossby
number, but the differential rotation is no longer solar, with the equatorial
regions rotating more slowly than the mid-latitudes2 ([51, 24]. in particular

2Note however that some mean-field turbulence models do produce a single-cell meridional flow
in conjunction with a solar-like differential rotation profile; see, e.g., [84].
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their Fig. 10). Interestingly, given its rotation rate and luminosity, the sun
appears to be characterized by a Rossby number near the tipping point between
these two regimes, and some global MHD simulations indicate that magnetic
stresses may turn an anti-solar differential rotation into a solar-like profile,
while generating a solar-like single-cell meridional flow profile (see [81, 67, 68],
and references therein).

The implications of single vs multi-cell meridional flows for flux transport
dynamos are profound. Multiple meridional flow cells can lead to a variety
of time-latitude patterns departing significantly from the observed sunspot
butterfly diagram [78, 132, 10]. The dynamo simulations of [62] do suggest
that if the diffusivity is sufficiently high, an equatorward drift of the deep
toroidal field can be achieved even in the presence multiple flow cells stacked
in radius, provided the deeper cell has an equatorward return flow at the base
of the convective envelope. The key parameter then becomes the magnetic
Reynolds number (11), which is critically dependent on the assumed value
for the (turbulent) magnetic diffusivity, a notoriously difficult quantity i to
compute from first principles3.

To sum up: flux transport dynamo can in principle produce solar-like
“butterfly diagrams” even in cases where classical dynamo waves would do
otherwise; however, their proper operation depends sensitively on the spatial
form of the internal axisymmetric meridional flow, as well as on the value of
turbulent magnetic diffusivity produced by solar convection.

6 Tension: Competing inductive mechanisms?

The turbulent α-effect is by no means the only way to evade Cowling’s theorem.
Originally proposed by Babcock [5] and developed quantitatively by Leighton
[98, 99], but largely eclipsed by the rise of mean-field electrodynamics until its
vigorous revival a quarter of a century later [190, 36, 43, 40, 114], what is now
known as the Babcock-Leighton mechanism is arguably its most convincing
alternative.

A little over a century ago Hale and collaborators established a number
of empirical Laws describing the cycle-to-cycle variations in the hemispheric
pattern of magnetic polarity measured in sunspots [59]. They also established
what is since known as Joy’s Law namely the systematic inclinations of the
line segment joining the poles of bipolar sunspot groups with respect to the
E-W line, this tilt angle (γ) increasing with heliocentric latitude (λ). Leighton
[99] originally parametrized this variation as

sin γ = 0.5 sinλ , (12)

3Alternate versions of flux transport dynamos can be constructed by relying on turbulent pump-
ing (see S2) to achieve, in part or in its entirety, downward transport of the surface field [75] and
equatorward drift of the deep toroidal field [57, 64]. Measurements of turbulent pumping in some
MHD numerical simulations of solar convection do yield strong subsurface downward pumping as
well as equatorward latitudinal pumping at mid- to low latitudes within the convecting fluid lay-
ers, with speeds of a few meters per second [122, 138, 159, 193, 157], similar to the deep meridional
flow speed.
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Fig. 3 Schematic illustration of the Babcock-Leighton mechanism in operation. At left,
BMRs have just emerged, abiding to Hale’s polarity Laws as well as Joy’s Law. After some
time (middle), the BMRs have decayed and spread diffusively, with preferential transequa-
torial dissipation of the leading polarities, and transport of the residual trailing polarity
to high latitudes by surface flows. This eventually leads to the reversal of the pre-existing
dipole (here negative), and buildup of a new (positive) dipole (at right). Diagram produced
by D. Passos, used by permission.

but other related forms fit the data equally well, in view of the large scat-
ter of observed tilt angles about such mean relationships (see, e.g., [106] and
references therein).

Bipolar magnetic regions (BMRs) are believed to originate from mag-
netic flux ropes buoyantly rising through the convection zone and piercing
the photosphere as “Ω-loops” [125]. Modelling of this process in the thin flux
tube approximation has allowed to identify the physical underpinning of Joy’s
Law, in the action of the Coriolis force on flows developing along the axis
of buoyantly rising magnetic flux ropes [42, 48, 26], and/or via the asym-
metric buffeting imparted by cyclonic convection [196, 195] (see [49] for a
comprehensive review).

The global dipole contribution δD associated with a BMR carrying a mag-
netic flux Φ with pole separation d and emerging at latitude λ [129] is given
by:

δD =
3 cosλ

4πR2
Φd sin γ . (13)

As BMRs decay and “release” this dipole moment, preferential cross-equatorial
dissipation of the leading magnetic polarity and transport of the trailing polar-
ity towards the poles leads to polarity reversal and subsequent buildup of a new
global dipole moment. This surface transport of magnetic flux is observed at
the solar surface, and has been modelled in detail [189, 77, 182, 100, 199], leav-
ing little doubt to its role in reversing the surface dipole. Figure 3 illustrates
schematically this sequence of events. Note that the tilt embodied in Joy’s Law
is crucial here; if BMRs emerge aligned with the E-W direction (γ = 0), then
δD ≡ 0; both poles of the BMR then experience the same cross-equatorial
diffusive cancellation, leaving behind and no net hemispheric flux.

From end-to-end, the sequence of flux tube formation, destabilization,
emergence as BMRs, surface decay and transport, thus converts a positive
(negative) internal toroidal field into a positive (negative) dipole moment,
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in a manner analogous to a positive α-effect in mean-field electrodynamics4.
Rotational shearing of this large-scale dipole can then regenerate the toroidal
component and close the dynamo loop.

As with mean-field dynamos based on the turbulent α-effect, Babcock-
Leighton dynamos must abide with helicity conservation. Magnetographic
observations indicate that the magnetic flux ropes emerging as BMRs carry
magnetic helicity in the form of internal twist about their axis (see, e.g.,
[156, 101]), as expected if they form from a deep-seated dynamo-generated
large-scale magnetic field that is itself helical. Ultimately, the large-scale twist
of the flux rope itself (or writhe) associated with Joy’s Law, acts as the global
source of magnetic helicity in this class of dynamos. For more on these matters,
see [130] and references therein.

Most contemporary versions of solar cycle models based on the Babcock-
Leighton mechanism are formulated as flux transport dynamos, with the
meridional flow carrying the surface dipole to the deep interior5, where rota-
tional shearing takes place, and driving the equatorward propagation of
emerging BMRs in the course of the cycle (viz. Section 5). It must be empha-
sized that to operate properly, all such solar dynamo models must invoke a
strongly enhanced magnetic diffusivity, presumably of turbulent origin, as pro-
vided by mean-field theory. For more on such models, see Sections 5.4 and 5.5
in [35].

The polar cap (latitudes> 60 degrees) magnetic flux amounts to ∼ 1014Wb
at times of peak surface dipole strength. The total unsigned magnetic flux
emerging in the form of BMRs adds up to ∼ 1017Wb in the course of a typical
activity cycle. The toroidal-to-poloidal conversion efficiency of the Babcock-
Leighton mechanism thus needs not be high, of order ∼ 0.1 percent only. In fact
it has been argued that the poloidal flux generated by the Babcock-Leighton
mechanism is indeed sufficient, in conjunction with rotational shearing, to
account for the emerging magnetic flux [27], although turbulent induction in
the interior cannot be ruled out via this argument. Is the Babcock-Leighton
mechanism then essential to the solar magnetic cycle ? Answering this question
on the basis of observations would require a detailed magnetic flux bud-
get of the solar polar caps, i.e., accounting for flux emergence, submergence,
transport from lower latitudes, as well as local generation.

To sum up: The Babcock-Leighton mechanism is observed operating at
the solar surface, and in itself can account for the reversal of the surface dipole.
Whether the surface dipole so generated feeds back into the dynamo loop, or is
a mere side-effect of a deep-seated turbulent dynamo operating independently
in the solar interior, remains an open question.

4Note that in both cases, the Coriolis force ultimately provides the break of axisymmetry needed
to evade Cowling’s theorem.

5Turbulent pumping has also been invoked as a flux transport mechanism in this context, in
particular to ensure submergence of the surface magnetic field; see, e.g., [75].
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7 Tension: The surface dipole as precursor

The surface dipole strength at activity minimum is long known to be a
good precursor for the amplitude of the upcoming sunspot cycle [151, 175].
(for reviews of solar cycle prediction schemes, see [127, 128]). The dipole-as-
precursor is also implemented in some dynamo model-based cycle forecasting
schemes [37, 76, 12]. In such cases the details of the underlying flux transport
dynamo model (Section 5) are secondary, as long as shearing by differential
rotation is linear, i.e., there is no significant dynamical backreaction of the
magnetic field on differential rotation, and the associated inductive shearing
is not subjected to significant forcing by random fluctuations.

The good precursor value of the solar surface dipole is often matter-of-
factly invoked as empirical support for the Babcock-Leighton “‘picture” of the
solar dynamo, i.e., the large-scale poloidal magnetic component being regener-
ated by the surface decay of bipolar magnetic regions (viz. Section 6). Figure
4, adapted from [32], offers a specific counterexample to this claim. Panel (A)
and (B) show time series of volumetric magnetic energy (red) and surface
dipole (green; more precisely: Northern hemisphere polar cap magnetic field)
produced by two dynamo models differing only in their poloidal source; the
solution of panel (A) is a conventional mean-field αΩ dynamo model, with the
α-effect concentrated at the base of the convection zone, but includes a merid-
ional flow and operates in the flux transport regime (Section 5). The solution of
panel B is a mean-field-like Babcock-Leighton dynamo model using a non-local
surface poloidal source term, as described in [40]. Both models are axisym-
metic, kinematic, use the same solar-like parametrization of the solar internal
differential rotation, and the quadrupolar meridional flow pattern of [187],
characterized by a single flow cell per meridional quadrant spanning the full
convection zone. In both cases zero-mean stochastic fluctuations are imposed
on the dynamo number multiplying the poloidal source term, of amplitude
corresponding to 50% of the mean and with coherence time of one month.

As shown on panel C, in either model no correlation is observed between
the dipole strength at minimum and the amplitude of the cycle just ending,
consistent with the fact that imposed random fluctuations affect the produc-
tion of the poloidal component from the toroidal component. However, both
models show a strong correlation between dipole strength and the amplitude
of the subsequent cycle (panel D), as measured here via volumetric magnetic
energy. In the case of the mean-field αΩ model, this correlation vanishes alto-
gether if the meridional flow is turned off and the model then operates as a
classical αΩ model, with equatorward propagation of activity belts driven by
a dynamo wave. The surface dipole then becomes a side-effect of a dynamo
operating in the deep interior, and does not feed back into the dynamo loop.
Nonetheless, in the flux transport mean-field αΩ model the surface dipole is
as good a precursor of the next cycle as in the Babcock-Leighton model.

To sum up: for the surface dipole moment to act as a good precursor
of the upcoming cycle’s amplitude, two conditions must be met: (1) the pri-
mary source of fluctuation must reside in the regeneration of the large-scale



Springer Nature 2021 LATEX template

Evolution of Solar and Stellar Dynamo Theory 17

Fig. 4 Two solar cycle-like solutions in flux transport dynamo models differing only in
their mechanism of poloidal field regeneration, and subjected to stochastic forcing of the
latter (see text). Panel A and B are respectively an αΩ and Babcock-Leighton solar cycle
models, both including meridional circulation. Green lines are time series of the surface
polar cap magnetic field, and red lines are time series of magnetic energy integrated over the
solution domain, used here as a proxy of magnetic cycle amplitude. Neither model shows
a significant correlation between cycle amplitude and dipole strength at the subsequent
minimum (panel C), but both show a strong correlation between dipole strength at minimum
and the amplitude of the subsequent cycle (panel D). Figure 19 in [35], used with permission.

poloidal magnetic component, and (2) the surface dipole must feed back into
the dynamo loop. Many dynamo scenarios meet both constraints, and none
can be favored over another only on the basis of the precursor value of the
surface dipole.

8 Tension: cycle fluctuations: stochastic or
nonlinear?

The sunspot numbers record reveals significant cycle-to-cycle variations in the
amplitude, duration, shape, and hemispheric asymmetry of the solar cycle (see
[60], and references therein). Reconstructions of solar activity based on cosmos-
genic radioisotopes also reveals modulation patterns unfolding on centennial
to millennial timescales [185]. What is the physical origin of these variability
patterns ?
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Solar and stellar dynamos draws their energy from the kinetic energy of
the participating inductive flows, through work done against Lorentz force
associated with the dynamo-generated magnetic field. This is a nonlinear back-
reaction of the magnetic field on the flows, which most certainly is what
prevents unbound growth of the cycle amplitude, and may also drive amplitude
modulation on timescale longer than the cycle period.

Solar and stellar dynamos also operates in part or in toto in strongly
turbulent convective envelopes. Turbulent convection acts as multiscale and
spatiotemporally highly variable inductive component, which from the point
of view of the large-scale magnetic field manifests itself as short coherence time
stochastic “noise” superimposed on the mean electromotive force and induc-
tion by large-scale flows. Such stochastic noise can also cause significant cycle
amplitude variability, Figure 4 herein being a case in point.

Is stochastic forcing or deterministic nonlinear backreaction driving
observed cycle fluctuations ? This is a particularly complex question to answer
because in the solar/stellar context, many flow components contribute to
induction (and/or flux transport), and all are in principle impacted by the
Lorentz force associated with the dynamo-generated large-scale magnetic field.
Moreover, the magnetic field can also impact large-scale flows indirectly, via
alterations of of Reynolds stresses powering them (the so-called Λ-quenching;
see [87, 91, 141]), or via global constraints such as magnetic helicity conser-
vation, as discussed in Section 3. To further complicate matters, in general
the response of the dynamo to stochastic forcing depends on the nature of the
nonlinearity regulating the average cycle amplitude (see, e.g., [14, 176] and
references therein).

Assorted dynamo modelling work (see, e.g., [111, 70, 119, 184, 38, 133,
118, 65] for a representative subset) has amply demonstrated that in the
presence of stochastic forcing, many solar-like behaviors, such as marked ampli-
tude fluctuations, sustained mixed-parity modes, cross-equatorial activity, and
intermittency, can materialize naturally in critical or very weakly supercrit-
ical dynamos. R. Cameron and M. Schüssler [29] go further in arguing that
a stochastically forced weakly supercritical dynamo is all that is needed to
reproduce the observed spectral properties of solar activity, in a manner that
is generic with respect to the amplitude-limiting nonlinearity. The key of their
proposal is that the linear dynamo growth rate be much smaller than the cycle
period —as one would indeed expect for very weakly supercritical dynamos.
An ensemble average of their model runs yields a flat spectrum at low frequen-
cies, but any single instance is characterized by spectral structure, of purely
random origin (see their Fig. 3). Cosmogenic radioisotope reconstructions of
solar activity on long timescale also show spectral structures at low frequen-
cies, but also represent a single realization of a specific dynamo —the Sun! Can
such reconstructions then actually prove or disprove the Cameron & Schüssler
conjecture ? Notwithstanding circumstantial evidence related to rotational
evolution [85, 107], there are no a priori reasons to believe that the solar
dynamo is only weakly supercritical. Moreover, long timescale modulation of
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cyclic behavior, as well as parity modulation, intermittency, etc, are also read-
ily produced purely deterministically through various nonlinearities, notably
magnetic backreaction on differential rotation [178, 92, 134, 112, 25, 197, 160]
(see also Section 4 in [35]). In a picture purely based on stochastic forcing, one
would not expect any phase coherence in long term fluctuations. Cosmogenic
reconstructions do suggest phase persistence and non-random clustering pat-
terns for Grand Minima and Maxima (more on these further below), but even
the most recent 9000 yr reconstructions [183, 201] remain too short to yield
strong statistical significance to confidently support or refute either class of
explanation.

To sum up: The exact nature of the magnetic nonlinear backreaction
mechanism(s) stabilizing the amplitude of the solar dynamos is not yet identi-
fied with confidence; nor are the mechanisms, whether of a stochastic or purely
deterministic nature, driving apparently random cycle-to-cycle fluctuations in
cycle characteristics such as amplitude and duration, as well as variability on
timescale longer than the cycle period. These are absolutely fundamental gaps
in our (lack of) understanding of solar and stellar dynamos.

9 Tension: Explaining Grand Minima

The most extreme pattern of solar fluctuation is arguably the Grand Minima of
solar activity, epochs during which activity falls to very low levels over a time
period much longer than the magnetic cycle period. First noted in the sunspot
record independently by G. Spörer and E. W. Maunder in the late nineteenth
century, and much later rediscovered [46], the 1645–1715 Maunder Minimum
has become the archetype of such events, which have been found to recur
aperiodically in the cosmogenic radioisototope record spanning the Holocene
(see [186], and references therein). Relatively recent similar events include the
Spörer Minimum (ca. 1416–1534) and the Wolf Minimum (ca. 1282–1342).
Other periods of sustained higher-than-average activity, “Grand Maxima”, can
also be identified [185].

The Maunder Minimum remains unique in that it is the only Grand
Minimum for which direct observations of sunspots are available. Extensive his-
torical analyses have revealed that the Sun was not entirely devoid of sunspots
during the Maunder Minimum, but that the few sunspots observed were almost
all located in the Southern solar hemisphere [144, 71, 186]; for a comprehensive
review of historical sunspot observations, see [2]. Another intriguing pattern
relates to a possible change in the surface latitudinal rotation, as revealed
from analyses of sunspot drawings made before, during and after the Maunder
Minimum [45, 30].

Dearth in production of sunspot does not necessarily mean a halt in cyclic
regeneration of the solar large-scale magnetic field. The buoyant destabiliza-
tion of magnetic flux rope formed in the deep solar interior (presumably),
with subsequent rise through the convective envelope and emergence as bipolar
magnetic regions, almost certainly involves a threshold in magnetic intensity
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[154]. Consequently, the magnetic cycle may well continue unabated through
Grand Minima, without reaching a magnetic amplitude sufficiently high to
produce sunspots. Under this view, Grand Minima simply represent the low
point of a large amplitude modulation. It is noteworthy that determinisitc,
nonlinearly-driven backreaction on large-scale inductive flows (Section 8) can
be accompanied by modulation of both flow and magnetic equatorial parity
unfolding on long timescales, thus offering an attractive explanation for the
strong hemispheric asymmetry of sunspot locations during the Maunder Min-
imum [164, 9], as well as any variation in differential rotation. For a sample of
dynamo models exhibiting this type of nonlinear modulation, see [92, 25, 198]

A distinct class of explanations for Grand Minima invokes intermittency
[135], namely a transition between two distinct dynamo modes, the weaker
one non-cyclic and/or of very low magnetic amplitude. The switch between
modes can be driven either stochastically or deterministically. For a sample
of dynamo models generating Grand Minima-like episodes in this manner, see
[121, 33, 113, 184, 38, 118, 72, 1]. Explaining Grand Minima via intermittency
does pose a problem for dynamo models which are not self-excited, in the
sense of being subjected to a lower operating threshold, e.g., dynamos relying
on the Babcock-Leighton mechanism (Section 6). Jump-starting the primary
dynamo out of a Grand Minimum then requires either a secondary self-excited
dynamo [126, 63, 117, 149], or some other source of magnetic fields acting as
“magnetic noise” (see, e.g., [152, 121, 33, 180]).

The observations of low amplitude cyclic activity in the 10Be isotope record
has been presented as evidence that the solar cycle was still running throughout
the Maunder Minimum [9], the interplanetary magnetic field being a complex
sampling of both active region magnetic fields as well as the global dipole. A
turbulent αΩ dynamo may well continue to reverse polarity, while failing to
reach a magnetic amplitude sufficient to generate large emerging BMRs and
associated sunspots. This type of behavior does materialize more naturally in
dynamos undergoing large amplitude modulation through nonlinear backreac-
tion by the Lorentz force. However, in some flux transport models undergoing
intermittency, cyclic variations of the surface field can also take place as the
meridional flow entrains the residual magnetic field (see [33, 149] for spe-
cific examples). The persistence of cycle phase through Grand Minima is a
potentially powerful discriminant, but quite challenging to harness in practice.

To sum up: A wide variety of potentially viable dynamo-based scenarios
for Grand Minima have been proposed, but which (if any) actually applies to
the Sun remains an open question.

10 Tension: Sensitive cycles in MHD
simulations

For now more than a decade, many global magnetohydrodynamical simulations
of solar convection have achieved the production of large-scale magnetic fields
undergoing more or less regular polarity reversals, analogous to some extent
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to the solar magnetic cycle. For a representative sample of such simulations,
see, e.g., [52, 105, 115, 47, 104, 162, 69, 80, 174, 58, 68]. These simulations
rely on markedly distinct computational approaches to the numerical solution
of the MHD equations, in particular in the treatment of unresolved scales.
While they often generate similar convective and large-scale flow patterns, the
large-scale magnetic cycle they produce vary widely in their spatiotemporal
evolution (see Section 3.2 in [31] for a specific comparison). The origin of this
“structural fragility” is multi-faceted and remains ill-understood.

Figure 5 summarizes cycle properties in a series of global MHD simulations
from [174], collectively spanning a factor of 10 in rotation rate and 3 in convec-
tive luminosity. The ratio of kinetic energy contained in differential rotation
(DRKE) to total kinetic energy (KE) is plotted against Rossby number, with
symbols colored according to the character of the large-scale magnetic cycle
materializing in each simulation.

Fig. 5 A synthetic summary of a set of simulations from [174], showing the ratio of kinetic
energy contained in differential rotation to total kinetic energy, versus Rossby number. Deep
seated, solar-like decadal magnetic cycles are plotted in red. The blue points refer to short
(period of a few years) magnetic cycles unfolding in the upper third of the convecting fluid
layers, while black point indicate simulations generating steady large-scale magnetic fields.
Reproduced with permission from [174], copyright by AAS.

The sensitivity on the Rossby number is extreme; starting at Ro ≃ 0.1,
increasing Ro by a mere a factor of 10 takes one from rapid subsurface cycles,
through deep-seated decadal cycles in the range 0.3 ∼< Ro ∼< 1, and on to
steady large-scale magnetic field at Ro ∼> 1. This extreme sensitivity turns
out to be robust, in the sense that it materializes in MHD simulations using
entirely distinct numerical implementations and overall modelling frameworks;
consider the striking resemblance between Figure 13 in [24], working with the
ASH LES code [22], with Figure 5 herein, from [174] using the EULAG-MHD
ILES code [163].
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There is much more to the sensitivity issue than the Rossby number, how-
ever. The large-scale flow and magnetic field emerging in MHD numerical
simulations of solar convection are strongly influenced by the turbulent regime
attained. At high Reynolds number, stresses associated with the turbulent
magnetic field can have a strong impact on large-scale flows [47, 67, 24, 68],
thus indirectly affecting global dynamo action. Likewise, the relative impor-
tance of the many dissipation channels available to the system, as measured
by the viscous and magnetic Prandtl numbers, also influences significantly the
large-scale flows and dynamo action [80, 177].

Not surprisingly, the numerical treatment of small scales also impacts tur-
bulent induction. Mean-field analyses of large-scale magnetic cycles in MHD
simulations typically yield α-tensors that are full, with turbulent induction
often contributing on par with large-scale shearing [4, 159, 193, 188]. In mean-
field parlance, these simulations operate as α2Ω dynamos, or even α2 dynamos,
if turbulent induction dominates over shearing by differential rotation. Detailed
analyses of various simulations also reveal that small-scale and large-scale
inductive contribution sometimes counteract each other [138, 115, 24, 157],
which results in the total induction having a magnitude significantly smaller
than its individual contributions. Relatively small changes in one contribution,
for example in small-scale induction versus dissipation when distinct subgrid
models are used or when the magnetic Prandtl number is varied, can have
a much larger impact on total induction, and thus on the unfolding of the
large-scale magnetic cycle.

Another complication arises in MHD simulations reaching very high
Reynolds numbers [69], namely small-scale dynamo action. Producing a strong
small-scale magnetic field in this manner turns out to suppress the small-scale
turbulent flow otherwise responsible for the turbulent diffusion of the large-
scale magnetic component [157]. Somewhat counterintuitively, more strongly
turbulent simulations end up sustaining large-scale magnetic fields better than
less turbulent —and presumably less diffusive— simulations. Here again the
computational treatment of subgrid effects can have a large impact, and the key
to stable global magnetic cycles appears to be the minimization of dissipation
at the larger scales [173, 174].

Finally, the combination of multiple turbulent inductive contributions and
relatively complex internal differential rotation profiles with distinct shearing
regions can lead to the co-existence of multiple dynamo modes, spatially segre-
gated but nonetheless interfering with one another, generating variability and
modulation of magnetic cycle unfolding in MHD simulations [8, 79, 174, 188].
Interference between distinct dynamo modes can also yield occasional episodes
of strongly reduced cyclic activity [4, 79], somewhat reminiscent of Grand
Minima (viz. S9).

To sum up: Global MHD numerical simulations of solar convection can
generate large-scale magnetic fields undergoing more or less regular polarity
reversals. The unfolding of these magnetic cycles seems however far more sen-
sitive to modelling details and physical parameter regimes that suggested by
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observations of magnetism and cycles in solar-type stars. The physical origin
of this sensitivity remains an open question.

11 Tension(s): From solar to stellar dynamos

The sun is but a star, yet its ease of observation makes it an essential spring-
board towards interpreting magnetic activity and cycles observed in other stars
as resulting from the operation of dynamos. This is an immense topic, and we
will close this review by only highlighting a few key points.

As revealed by the epoch-making Mt Wilson Ca H+K survey [7], all
solar-type stars show evidence of magnetic activity, and a subset shows fairly
well-defined cyclic variability on decadal timescales, presumably reflecting the
presence of a dynamo-powered large-scale magnetic cycle analogous to the
solar cycle. Observation of X-Ray emission, a tracer of coronal activity pow-
ered by magnetism, show a well-defined variation with the Rossby number
inferred from the observed luminosity via mixing length theory. Particularly
noteworthy is the fact that this trend is the same for solar-type stars (meaning,
G and K dwarfs having a radiative core and overlying convective envelope),
fully convective M dwarfs [200], and even evolved subgiants and giants [97].
This suggests —without strictly proving— convective turbulence-related uni-
versality in the dynamo mechanism underlying stellar magnetic activity at
large.

Again in late-type main-sequence stars, measurements of surface mag-
netism also show a fairly well-defined trend with Rossby number, also largely
independent of spectral type [140]. This points again to a certain level of uni-
versality in stellar dynamo, which is not obvious to reconcile with the many
detailed dynamo scenarios designed specifically to match solar observations
(but do see [158]).

Even if complete knowledge of the solar dynamo were at hand —and it is
not, as pointed out throughout this review,— going to the stars (even “only”
to late-type main-sequence stars) demands answers to a number of crucial
questions, including minimally:

1. Which is the primary polarity reversal mechanism: α-effect, or Babcock-
Leighton,... or something else ?

2. How do differential rotation and meridional circulation vary with rotation
rate, luminosity, and internal structure ?

3. How do turbulent coefficients (α-effect, turbulent pumping, turbulent
diffusion) vary with rotation rate, luminosity, and internal structure ?

4. How do sunspots and BMRs form and decay in stars of varying structure (in
particularly, depth of convective envelope), rotation rate and luminosity ?

Harnessing knowledge acquired via solar dynamo modelling and MHD
numerical simulations can in principle adress many of these questions; for a
thorough review see [23]. The variation of differential rotation and meridional
circulation is accessible via both semi-analytical turbulence models (e.g., [86])
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and numerical simulations ([24], and references therein), and there is now gen-
eral agreement that (latitudinal) differential rotation does not vary much with
rotation rate once in the solar-like (rapidly rotating equator) regime.

The behavior of large-scale magnetic cycles, on the other hand, shows
greater disagreement between observations and theory; as a single example,
consider the variation of the cycle period with Rossby number: the original
dynamo analysis of Mt Wilson data by [116] suggested Pcyc/Prot ∝ Ro0.25,
while the distinct numerical simulations of [174] and [191] indicate Pcyc/Prot ∝
Ro−1.6 and Ro−1.8, respectively. Reliably estimating the Rossby number is far
from trivial, either from stellar data or from numerical simulations (see, e.g.,
[24]), but the fact that these two trends run in opposite direction is worth
reflecting upon, to say the least.

To sum up: The rapidly growing body of high-quality observations of
stellar activity and magnetism begs for the design of a unifying dynamo frame-
work applicable to both the sun and solar type stars of varying spectral type,
luminosity, and rotation rate. Which are the key elements on which to build
such a framework remains an open question.
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[2] Rainer Arlt and José M. Vaquero. Historical sunspot records. Living
Reviews in Solar Physics, 17(1):1, February 2020.

[3] V. I. Arnol’d and B. A. Khesin. Topological methods in hydrodynamics.
Annual Review of Fluid Mechanics, 24:145–166, January 1992.

[4] K. Augustson, A. S. Brun, M. Miesch, and J. Toomre. Grand Minima
and Equatorward Propagation in a Cycling Stellar Convective Dynamo.
Astrophys. J., 809:149, August 2015.

[5] H.W. Babcock. The topology of the sun’s magnetic field and the 22-year
cycle. Astrophys. J., 133:572–589, 1961.

[6] Steven A. Balbus, Henrik Latter, and Nigel Weiss. Global model of
differential rotation in the Sun. Month. Not. Astron. Soc., 420(3):2457–
2466, March 2012.

[7] S. L. Baliunas, R. A. Donahue, W. H. Soon, J. H. Horne, J. Frazer,
L. Woodard-Eklund, M. Bradford, L. M. Rao, O. C. Wilson, Q. Zhang,
W. Bennett, J. Briggs, S. M. Carroll, D. K. Duncan, D. Figueroa, H. H.
Lanning, T. Misch, J. Mueller, R. W. Noyes, D. Poppe, A. C. Porter,



Springer Nature 2021 LATEX template

REFERENCES 25

C. R. Robinson, J. Russell, J. C. Shelton, T. Soyumer, A. H. Vaughan,
and J. H. Whitney. Chromospheric Variations in Main-Sequence Stars.
II. Astrophys. J., 438:269, January 1995.

[8] P. Beaudoin, C. Simard, J.-F. Cossette, and P. Charbonneau. Dou-
ble Dynamo Signatures in a Global MHD Simulation and Mean-field
Dynamos. Astrophys. J., 826:138, August 2016.

[9] J. Beer, S. Tobias, and N. Weiss. An Active Sun Throughout the
Maunder Minimum. Solar Phys., 181:237–249, July 1998.

[10] Bernadett Belucz, Mausumi Dikpati, and Emese Forgács-Dajka. A
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Henning, M. Kürster, and E. Pallé. Magnetism, rotation, and nonthermal
emission in cool stars. Average magnetic field measurements in 292 M
dwarfs. Astron. Ap., 662:A41, June 2022.

[141] M. Rempel. Flux-transport dynamos with lorentz force feedback on
differential rotation and meridional flow: Saturation mechanism and
torsional oscillations. Astrophys. J., 647:662–675, 2006.

[142] M. Rempel. Transport of toroidal magnetic field by the meridional flow
at the base of the solar convection zone. Astrophys. J., 637:1135–1142,
2006.

[143] Matthias Rempel. Creation and destruction of magnetic field. In Car-
olus J. Schrijver and George L. Siscoe, editors, Heliophysics: Plasma
Physics of the Local Cosmos, pages 42–76. 2009.

[144] J.C. Ribes and E. Nesme-Ribes. The solar sunspot cycle in the maunder
minimum ad1645 to ad1715. Astron. Astrophys., 276:549–563, 1993.

[145] P. Roberts and M. Stix. The Turbulent Dynamo: A Translation of a
Series of Papers by F. Krause, K.-H Radler, and M. Steenbeck (No.
NCAR/TN-60+IA). 1971.

[146] Günther Rüdiger and Rainer Hollerbach. The magnetic universe :
geophysical and astrophysical dynamo theory. 2004.

[147] Guenther Ruediger. Differential rotation and stellar convection. Sun and
the solar stars. 1989.

[148] Aleksandr A. Ruzmaikin, Dmitrii D. Sokolov, and Anvar M. Shukurov.
Magnetic Fields of Galaxies, volume 133. Kluwer, Dordrecht, 1988.

[149] Chitradeep Saha, Sanghita Chandra, and Dibyendu Nandy. Evidence
of persistence of weak magnetic cycles driven by meridional plasma
flows during solar grand minima phases. Month. Not. Astron. Soc.,
517(1):L36–L40, November 2022.

[150] A. Schad, J. Timmer, and M. Roth. Global Helioseismic Evidence for a
Deeply Penetrating Solar Meridional Flow Consisting of Multiple Flow
Cells. Astrophys. J. Lett., 778:L38, December 2013.

[151] K.H. Schatten, P.H. Scherrer, L. Svalgaard, and J.M. Wilcox. Using
dynamo theory to predict the sunspot number during solar cycle 21.
Geophys. Res. Lett., 5:411–414, 1978.

[152] D. Schmitt, M. Schuessler, and A. Ferriz-Mas. Intermittent solar activity
by an on-off dynamo. Astron. Ap., 311:L1–L4, July 1996.



Springer Nature 2021 LATEX template

34 REFERENCES
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